freeBuf
主站

分类

漏洞 工具 极客 Web安全 系统安全 网络安全 无线安全 设备/客户端安全 数据安全 安全管理 企业安全 工控安全

特色

头条 人物志 活动 视频 观点 招聘 报告 资讯 区块链安全 标准与合规 容器安全 公开课

官方公众号企业安全新浪微博

FreeBuf.COM网络安全行业门户,每日发布专业的安全资讯、技术剖析。

FreeBuf+小程序

FreeBuf+小程序

Kaggle:一套完整的网站流量预测模型
2018-02-17 15:00:06

今天给大家推荐的是一个名叫Kaggle的网站流量预测项目,本项目采用Python语言开发,可以给大家的流量预测建模提供一些思路。

1.png

项目地址

GitHub传送门

数据模型

Kaggle的训练数据集由大约14.5万套时间序列组成,每一套时间序列代表的是每天不同维基百科文章页的浏览次数,时间记录的周期为2015年7月1日到2017年9月10日。而我们的目标是为了预测2017年9月13日到2017年11月13日之间每天的页面浏览量。其中,需要检测的流量包括移动端、桌面端以及爬虫流量。

注:模型的评价指标为SMAPE。

测评方法

使用了一个单一的神经网络来对14.5万套时间序列进行建模,该模型架构跟WaveNet非常相似,主要由扩展卷积和因果卷积网络组成,整个概念如下图所示:

2.gif

为了让数据模型适应并生成整个64天的相干预测值,我们还需要对模型进行一些修改。为了在条件信息不足的情况下尽量减少错误序列信息的生成,我们采用了一种“序列-序列”的方法,其中的编码器和解码器不会共享参数。这样一来,我们就可以在模型生成长序列的情况下让解码器来负责处理积累的噪声了。

下面给出的是一些样本预测,并演示了一些可以捕捉和预测的网络模型。其中,预测值为黄色,灰色的是真实数据值,Y轴为对数变换:

3.png 

4.png

配置要求

12 GBGPU(建议)+Python2.7

Python数据包:

numpy==1.13.1

pandas==0.19.2

scikit-learn==0.18.1

tensorflow==1.3.0 

* 参考来源:github,FB小编Alpha_h4ck编译,转载请注明来自FreeBuf.COM

# Kaggle # 网站流量
免责声明
1.一般免责声明:本文所提供的技术信息仅供参考,不构成任何专业建议。读者应根据自身情况谨慎使用且应遵守《中华人民共和国网络安全法》,作者及发布平台不对因使用本文信息而导致的任何直接或间接责任或损失负责。
2. 适用性声明:文中技术内容可能不适用于所有情况或系统,在实际应用前请充分测试和评估。若因使用不当造成的任何问题,相关方不承担责任。
3. 更新声明:技术发展迅速,文章内容可能存在滞后性。读者需自行判断信息的时效性,因依据过时内容产生的后果,作者及发布平台不承担责任。
本文为 独立观点,未经允许不得转载,授权请联系FreeBuf客服小蜜蜂,微信:freebee2022
被以下专辑收录,发现更多精彩内容
+ 收入我的专辑
+ 加入我的收藏
相关推荐
  • 0 文章数
  • 0 关注者