freeBuf
主站

分类

云安全 AI安全 开发安全 终端安全 数据安全 Web安全 基础安全 企业安全 关基安全 移动安全 系统安全 其他安全

特色

热点 工具 漏洞 人物志 活动 安全招聘 攻防演练 政策法规

点我创作

试试在FreeBuf发布您的第一篇文章 让安全圈留下您的足迹
我知道了

官方公众号企业安全新浪微博

FreeBuf.COM网络安全行业门户,每日发布专业的安全资讯、技术剖析。

FreeBuf+小程序

FreeBuf+小程序

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

隐私泄露、数据孤岛、数据滥用……「隐私计算」如何解决大数据行业共性挑战?
FreeBuf_351154 2021-01-04 11:39:00 185492

编者按:本文来自微信公众号“晨山资本”(ID:chenshancapital)

数据正在成为企业最重要的资产。然而在这样的时代背景下,挖掘数据价值仍然面临诸多挑战。一方面,众多行业存在的数据孤岛现象,使得数据流通困难,难以支撑智能分析、决策等多种应用;另一方面,如何确保数据流通的合法合规,避免数据遭受非法调用、转售等风险,也是企业和监管需要思考的问题。

如何让数据在安全中开放、在开放时安全,已成为一个时代性课题,而“隐私计算”就是破解行业困局的解决方案之一。

富数科技」是晨山投资的优秀创业公司。在过去的几年中,我们见证了团队的快速成长和自我迭代,逐步成长为国内隐私计算领域的头部企业之一。在本文中,我们和富数科技CEO张伟奇就隐私计算的技术和行业等问题展开了深度探讨。

阅读愉快。☕

v2_848888271c1742a6899deeb73324100b_img_000

Q1 富数作为国内最早进入隐私计算领域研发的创业公司,当初为何看好这个方向?

张伟奇:富数科技投身隐私计算,其实并不是偶然。

富数科技在2016年初创时,大数据风控正值风口。我们最早的业务就是通过大数据建模,为银行、保险等金融行业客户提供反欺诈建模和信用评估等服务。

在业务进展过程中,我们发现很多企业在挖掘大数据价值的同时,也会触碰到用户的个人隐私或商业秘密;有些同行也因为不正当使用或者转售数据的行为,对行业造成了比较负面的影响。受制于当时技术的局限,拥有数据的企业要么选择封闭,形成数据孤岛;要么选择开放,同时接受数据在流通中被非法留存和调用的风险。这种进退两难的处境,使得整个行业的发展受到了挑战。

富数团队在大数据领域有多年的工作经验,我们始终认为未来数据的使用和流通,应该是以保护个人隐私和数据安全为基础的。对各种数据的滥用、非法转售,迟早会让行业发展出现问题。基于这样的思考,我们团队希望能找到合适的技术,帮助解决大数据行业面临的普适性挑战。我们意识到,隐私计算可能是解决数据隐私问题的关键。

我们下定决心all in隐私计算,将公司的财力和人力都全面投入进来。这在三四年前是个很艰难的决定,尤其是行业中有更多“简单”的赚钱机会的时候。也要感谢我们的投资人,帮我们做了很多市场调研工作,也坚决支持了团队选择的方向。

我们的坚持和行业判断在这两年得到了初步验证:数据安全和隐私保护逐渐被监管机构和国家纳入重点关注领域,推动了隐私计算行业的加速发展。我们多年的技术研发积累也使得我们充分收获了行业的红利,目前已经在多个行业开始商业化落地,逐步推动我们当年的坚信的愿景成为现实。

Q2 以微众、百度、头条为代表的巨头,纷纷开源了自己的联邦学习框架。这对行业格局将带来怎样的改变?你认为未来隐私计算领域竞争的关键将是什么?

张伟奇:首先,对于市场的教育和推广而言,开源具有非常显著的效用。通过开源,让更多人知道并尝试运用联邦学习去解决数据流通的问题。从这一个层面来说,我觉得开源是很好的,对提升行业的热度、为行业产生更多积极的变化很有帮助。

但同时,我们也不可否认,目前的隐私计算技术还处于发展初期,技术、产品的成熟度还是有提升空间的。那么,在这种情况下的开源,我认为需要打一个问号。技术不成熟的开源,会让采用这些技术框架的厂商面临更多的技术挑战和工程难题,也会增加客户判断隐私计算提供商能力的难度。

经过反复的深入思考和讨论,我们认为对富数而言,现阶段并不是选择开源框架的最好节点:

第一,根据富数在金融科技领域多年深耕的经验,我们非常清楚银行这类的客户更倾向于接受企业级、私有化、自研可控的技术服务。

第二,密码学专利和知识产权在现阶段是公司最核心的竞争力,在这一方面,富数的优势是十分明显的,我们拥有国内顶级的自主研发团队和技术积累,暂时还不需要集成第三方的内核。

第三,目前,我们根据客户实际情况,在模块耦合性上进行了升级,算法模块已经可以实现很灵活地开放给开发者社区。在技术、产品更加成熟的时候,我们会用更加开放的态度,拥抱开发者、拥抱合作伙伴。

我们认为,未来隐私计算的竞争格局,关键点是谁能够成为自研可控、互联互通的基础设施,谁能够服务于更多的数据源、应用场景和合作伙伴。核心点在于安全性、技术、产品和服务能力。

Q3 行业仍处于发展早期,你认为隐私计算行业未来的商业路径是怎样的?

张伟奇:隐私计算行业的商业路径,不同类型的公司可能不太一样——像BAT这种自有数据生态的隐私计算公司,初衷更多是通过这项技术做自有数据的商业化变现;富数作为一个中立的技术赋能方,致力于帮助不同种类的数据所有方和使用方,建设新一代数据流通的基础设施网络,充分发掘数据的价值。

对我们而言,我们的商业路径分为三个阶段:

第一阶段:从关注个人隐私和数据安全合规的领域开始,让富数科技成为数据要素的基础设施

这一阶段重点在金融、电力、运营商、政府大数据中心等机构。这些机构强调本地化部署、安全可控,所以有硬核自研技术实力、理解客户应用场景、技术符合监管标准的独立第三方,是非常有机会占据领先地位的。这个阶段的商业模式主要是以软件售卖、项目交付为主。

第二阶段:逐步拓展到中小企业和科技公司

中小企业和科技公司对于成本敏感,所以他们更愿意接受可信的安全计算云服务,这个阶段的商业模式主要是按量付费模式。而富数产品矩阵里也有这一方面的部署,我们的“可信数据流通平台”已经获得了信通院的认证,目前国内只有两家公司第一批通过了这项认证。

第三阶段:当隐私计算成为不可或缺的基础设施,渗透到成千上万的机构时,隐私计算生态网络形成

这时比拼的就是生态构建的力量和平台的兼容能力。当一家新的机构部署了富数的隐私计算平台后,就会发现所需要的上下游合作伙伴都已经集中在这个平台上。通过隐私计算平台,它可以自由地实现跨竞争对手的数据源贡献、跨行业的数据共享等。这阶段的商业模式,主要是通过平台费、运营费和提供增值服务的方式实现商业价值。

Q4 你曾说“未来十年将进入数据安全2.0时代,重点是数据开放的安全”,是哪些因素在推动数据安全赛道升级?

张伟奇:数据安全1.0时代,我们强调通过包括网络安全、结构安全、系统安全等手段,让数据只进不出,把数据系统变成安全沙箱,变得牢不可破。这种方式在保护数据的同时,也阻碍了数据价值的流通,让数据无法完全发挥价值功能。这在目前强调数据要成为生产要素的时代背景下,是不可取的。

而以密码学、可信硬件环境为基础的隐私计算技术,可以保证数据安全的前提下,实现数据价值的流通,是数据成为生产要素重要的基础设施。我们称之为数据安全2.0,让数据在安全中开放、在开放时安全,这是一个全新的时代。

数据安全2.0时代,是多个因素推动的必然结果:

1. 市场强劲的需求

数字经济时代,数据的流通、共享与协同是社会和企业发展的刚性需求。企业自身所拥有的数据是单一有限的,通过与其他企业进行多方数据共享,才能更好地释放数据的应用价值。同时,大数据、人工智能等技术可以进一步促进数字化转型,而这些技术都需要运用到数据。

所以数据在保护隐私和合规的前提下进行采集、加工、流通,不仅仅是市场的硬性需求,也是关系到数字化转型能否持续发展的基础设施级问题。

2. 监管的加强

近年来,不断曝光的隐私数据泄露等问题,引起了监管部门的高度重视,数据安全相关的监管政策也相继出台。传统情况下,不考虑个人隐私和数据安全的大数据使用方式将会迅速退出市场。如何兼顾数据的可用性和隐私安全保护,实现海量数据流动的同时保护数据隐私安全、防止敏感信息泄露,成为行业核心关注点。

3. 技术的可用

随着算力的增长和算法工程的优化,多方安全计算、同态加密、联邦学习、TEE等隐私计算技术成熟度逐步提升,逐步进入到可用状态。目前已在金融领域、医疗领域率先落地,并拥有成功的大数据风控建模、医疗信息分析等落地的案例,未来可预见更多的落地应用场景。

4. 标准的形成

中国信通院领导下的大数据标准委员会、央行科技司领导下的金标委为代表的国家机构,在2019年早期就开始组织行业领先企业,制定多方安全计算标准、组织评测认证,做行业推广。通过这些行业标准和管理办法,提升了市场对隐私计算的接受程度和辨析程度。

如果把2020年视作数据安全2.0的元年,早期以政府新基建和金融行业为主率先试水,未来还会有工业互联网、教育等领域逐步启动,最后会形成一个全面的互联互通的安全计算生态网络。

Q5 隐私计算的技术成熟度如何?已经解决了哪些问题,还有哪些难题有待解决?

张伟奇:技术还处于发展初期。从应用层面看,客户对隐私计算的理解和接受程度正在快速提升。同时,监管支持的安全性能标准和管理办法即将出台,这也会更好地帮助行业客户打消心中的疑虑,加快推动隐私计算在生产环境中的大规模应用。

以下技术问题,我们认为还有很大提升空间:

1. 安全性证明 

隐私计算处理的对象往往是敏感的数据资产,对用户而言试错成本大,并且由于隐私计算技术复杂,常常呈现“黑盒化”现象,用户的接受程度就受到一定的影响。因此,如何证明隐私计算的安全性(此处指工程安全性而非理论安全性),是用户重点关注的问题。

隐私计算这个概念算是这两年迅速升温的,大批厂商涌入隐私计算领域,在炒热市场的同时,也会让市场出现鱼龙混杂的现象。但目前隐私计算领域的法律、技术和数据的相关标准都不够完善,这也成为制约隐私计算发展的重要问题。所以,首先你要有国家和行业的资质标准认可,这是一个硬性指标,是不可或缺的。

其次,要让用户清晰地看见隐私计算过程,也就是让多方安全计算原理从黑盒变成白盒,让安全可视化,提高安全的可解释性,让用户掌握更强的系统运营能力。

还有就是可信第三方问题。目前在安全建模过程中,我们往往找不到合适的第三方,那么能不能通过两方直连来解决这个问题?如果没有第三方的存在,在一定程度上双方都获得了更加自主可信的数字空间,也就更加安全。

在安全性方面,目前富数科技的Avatar已经通过首创“安全驾驶舱”功能实现安全可视化,同时也支持无第三方直连。我们也还在不断深化研究,让用户能够更加信任隐私计算。

2. 算法与性能瓶颈

虽然目前隐私计算的性能已经大大提升,但由于加密机理复杂、交互次数多、现实数据流通量大、结构复杂等原因,仍存在计算性能、计算效率较低等问题。要解决这一部分问题,提高算力是关键。

计算性能可以融合多种技术路径和多项先进技术,包括密码学、人工智能、区块链等,实现性能提升;同时,还可以利用软硬件协同的方式来提升隐私计算性能,比如说,利用专用芯片等硬件加速隐私计算性能提升。通过软硬件结合的方式,还能给速度带来很大的提升空间,预计半年内还能提高20-50倍,并进一步拓展应用空间。

3. 产品能力

如何将先进的技术转化成产品是一个复杂的系统工程,对客户、市场而言,你的产品能否投入实际使用,你的系统是否简单易上手,你的安全性、可拓展性都是考核标准。

我们需要考虑密码学计算与大数据、AI框架的并行优化算法进行兼容,对整体实现并行优化;要确保实际使用过程中是绝对安全的;还有一点,要从长远的角度保障隐私保护技术的可拓展性,因为隐私计算正处在高速发展期,要考虑到未来的多种可能性。

4. 落地能力 

目前,隐私计算主要的应用场景集中在金融、医疗与政务领域中,其他领域的落地仍需大家进一步探索。这取决于厂商的多方面能力,包括产品、技术、垂直领域理解力、实施与服务和生态建设等能力。

再者,隐私计算的落地,还与业务的理解密不可分。我们在金融领域的丰富经验,让我们的产品实现落地时具有非常明显的优势。我们与交通银行的合作,正是因为我们对银行业务十分熟悉,降低了我们在沟通与对接的壁垒,我们能清楚地知道隐私计算技术能够从哪些业务场景切入,为金融

Q6 隐私计算行业人才难寻,富数如何吸引专业人才加入,以及公司期待找到怎样的人才?

张伟奇:隐私计算涉及了密码学、机器学习和分布式计算等交叉领域。前几年,密码学比较不受重视,很多人改行去了更加热门的领域,造成了科研人才的稀缺;在实际应用的时候又涉及大数据风控和建模领域等内容,但很多人更喜欢去搞应用级别的建模,所以这一部分人才也比较稀缺。

我们想要的人才,首先要有专业性,可以沉下心来做研发、做技术;其次隐私计算的落地场景还有很多未开发的空间,从金融到医疗、工业互联网、教育等领域都有待探索,因此我们还需要更多的应用专家,要有经验、有能力,可以从用户的视角帮他们解决隐私计算实际运用中的各种问题;再者,我们希望能招到对隐私计算感兴趣,觉得觉得自己能够胜任,愿意学习、不断提升的人。

目前,富数已经有了很强的技术团队和市场团队,有国际密码大师来学嘉教授,来自交大、复旦、浙大等知名院校的技术大牛,也有来自IBM、华为、平安、阿里等大厂的市场和运营团队,我们的精英队伍也在不断扩大。

Q7 数据安全和隐私保护已经成为时代性课题。富数作为安全计算领域的领跑者,有什么终极愿景?在数据智能的下一个时代,数据安全会如何重新定义行业?

张伟奇:富数的终极愿景,用一个最简单的词:Super Hub

过去的几十年,腾讯基于聊天产生了社交连接,阿里基于支付产生了货币连接,都是从一个基础设施开始,最后演化成国内最大的生态。未来的数据生态也需要健全的基础设施,帮助数据实现高效可靠的流通,推动数据智能在各行业的落地。我们认为,保护数据隐私和数据安全是解锁未来数据生态的关键,通过行业领先的技术,我们希望富数能成为未来数据生态中的基础设施建设者,并且在数据所有方和使用方间,建立一张全新的网络。

我相信,随着隐私计算的发展,技术和产品的成熟度将会迎来质的飞跃,隐私计算的应用场景也会快速扩展,隐私计算将成为必不可少的安全底座。同时基于多场景、跨场景等复杂的需求,隐私计算将形成多方生态,形成规模化效应。

所以,作为数据生产要素流通的底层集成设施和解决方案的供应商,我们希望富数的Avatar能成为数据生产要素的Super Hub。

最后聊一下数据和AI这个行业,智能时代必须依赖的3个要素“算法、算力、数据”,下一个时代会变成“安全算法、安全算力、安全数据”。因为一旦脱离了安全,数据行业的供需方都会遇到各种合规问题,这个趋势已经非常明显。再过几年,真有可能“数据流通之处,必有隐私计算技术加持”

>>晨山资本成立于2016年,是宽带资本生态中专注早期创新的投资平台。晨山资本重点投资于“数据驱动的产业互联网”主题的创新企业。晨山创始团队深耕科技创新行业投资十余年,历史投资组合包括美团点评(03690.HK)、朗新科技(300682)、分众传媒(002027)、亚信科技(01675.HK)、海光信息元年科技、亚信安全、同盾科技、涂鸦智能、零氪科技等众多行业领先的创新企业。

欢迎投递商业计划书:start@chenshancapital.com

# 数据泄露 # 数据库安全 # 数据安全
本文为 FreeBuf_351154 独立观点,未经授权禁止转载。
如需授权、对文章有疑问或需删除稿件,请联系 FreeBuf 客服小蜜蜂(微信:freebee1024)
被以下专辑收录,发现更多精彩内容
+ 收入我的专辑
+ 加入我的收藏
晨山资本
数据安全建设指南
隐私安全
FreeBuf_351154 LV.1
这家伙太懒了,还未填写个人描述!
  • 3 文章数
  • 2 关注者
聚焦零信任数据运营安全,「数安行」完成千万级人民币天使轮融资
2021-04-07
数据泄露事件频发,“数据安全”创业机会何在?
2020-07-03
文章目录